数学归纳法证明:​1^3 + 2^3 + 3^3 + … + n^3 = [n(n+1)/2]^2

证明:

如果命题对​n=r时对情形是正确对,即

​1^3 + 2^3 + 3^3 + … + r^3 = [r(r+1)/2]^2

然后在这等式两边加上​(r+1)^3,我们得到

​1^3 + 2^3 + 3^3 + … + r^3+(r+1)^3

​= [r(r+1)/2]^2 +(r+1)^3

​= r^2(r+1)^2/2^2 + (r+1)^3

​= [r^2(r+1)^2+4(r+1)^3]/2^2

​= (r+1)^2(r^2 +4(r+1))/2^2

​= (r+1)^2(r+2)^2/2^2

​= [(r+1)(r+1+1)/2]^2

这正好是当​n=r+1时的情形。

而当​n=1时,

​1^3 = [1(1 + 1)/2]^2= 1

成立,因此该等式对每个​n都成立。

数学归纳法证明:​\frac 1 {1*2} + \frac 1 {2*3} + … + \frac 1 {n(n+1)} = \frac n {n+1}

​n = 1时,​\frac 1 {1*2} = \frac 1 {1+1} = \frac 1 2

​n = r时,​\frac 1 {1*2} + \frac 1 {2*3} + … + \frac 1 {r(r+1)} = \frac r {r+1}

两边加上 ​\frac 1 {(r+1)(r+1 + 1)}

​\frac r {r+1} + \frac 1 {(r+1)(r+1 + 1)}

​= \frac {r(r+1+1) + 1} {(r+1)(r + 1 + 1)}

​= \frac {(r+1)^2} {(r+1)(r + 1 + 1)}

​= \frac {(r+1)} {(r + 1 + 1)}

这正好是当​n=r+1时的情形。

数学归纳法证明:​\frac 1 2 + \frac 2 {2^2} + \frac 3 {2^3} + … + \frac n {2^n} = 2 - \frac {n+2} {2^n}

​2 - \frac {n+2} {2^n} + \frac {n+1} {2^{n+1}}

​=2 - \frac {2(n+2)-(n+1)} {2^{n+1}}

​=2 - \frac {n+1+2} {2^{n+1}}

数学归纳法证明:​1 + 2q + 3q^2 + … + nq^{n-1} = \frac {1-(n+1)q^n+nq^{n+1}} {(1-q)^2}

​\frac {1-(n+1)q^n + nq^{n+1}} {(1-q)^2} + (n+1)q^n

​= \frac {1-(n+1)q^n + nq^{n+1} + (n+1)q^n(1-q)^2} {(1-q)^2}

​= \frac {1-(n+1)q^n + nq^{n+1} + (n+1)q^n(q^2-2q+1)} {(1-q)^2}

​= \frac {1 + nq^{n+1} + (n+1)q^n(q^2-2q)} {(1-q)^2}

​= \frac {1 + nq^{n+1} + (n+1)q^{n+2} -2(n+1)q^{n+1}} {(1-q)^2}

​= \frac {1 -(n+2)q^{n+1} + (n+1)q^{n+2} } {(1-q)^2}

数学归纳法证明:​(1+q)(1+q^2)(1+q^4)…(1+q^{2^n}) = \frac {1-q^{2^{n+1}}} {1-q}

​(\frac {1-q^{2^{n+1}}} {1-q})(1+q^{2^{n+1}})

​= \frac {1-q^{2^{n+1+1}}} {1-q}

求出下列等比级数的和:

​\frac 1 {1+x^2} + \frac 1 {(1+x^2)^2} + … + \frac 1 {(1+x^2)^n}

设 :

​\frac 1 {1+x^2} + \frac 1 {(1+x^2)^2} + … + \frac 1 {(1+x^2)^n} = m (1)

​(\frac 1 {1+x^2} + \frac 1 {(1+x^2)^2} + … + \frac 1 {(1+x^2)^n}) * (1+x^2) = m*(1+x^2)

​1 + \frac 1 {1+x^2} + … + \frac 1 {(1+x^2)^{n-1}} = m*(1+x^2) (2)

(2) - (1) 得

​1 - \frac 1 {(1+x^2)^n} = mx^2

​m = \frac {1- \frac 1 {(1+x^2)^n} } {x^2}

​1 + \frac x {1+x^2} + \frac {x^2} {(1+x^2)^2} + … + \frac {x^n} {(1+x^2)^n}

设 :

​1 + \frac x {1+x^2} + \frac {x^2} {(1+x^2)^2} + … + \frac {x^n} {(1+x^2)^n} = m (1)

​\frac x {1+x^2} + \frac {x^2} {(1+x^2)^2} + … + \frac {x^{n+1}} {(1+x^2)^{n+1}} = m * \frac x {1+x^2} (2)

(2) - (1) 得

​\frac {x^{n+1}} {(1+x^2)^{n+1}} - 1 = m * \frac x {1+x^2} - m

​\frac {x^{n+1} - (1+x^2)^{n+1}} {(1+x^2)^{n+1}} = m * \frac {x - (1+x^2)} {1+x^2}

​\frac {x^{n+1} - (1+x^2)^{n+1}} {(1+x^2)^n} = m * [x - (1+x^2)]

​m = \frac {x^{n+1} - (1+x^2)^{n+1}} {x(1+x^2)^n - (1+x^2)(1+x^2)^n}

​\frac {x^2 - y^2} {x^2 + y^2} + (\frac {x^2 - y^2} {x^2 + y^2})^2 + … + (\frac {x^2 - y^2} {x^2 + y^2})^n

设 :

​\frac {x^2 - y^2} {x^2 + y^2} + (\frac {x^2 - y^2} {x^2 + y^2})^2 + … + (\frac {x^2 - y^2} {x^2 + y^2})^n = m (1)

​(\frac {x^2 - y^2} {x^2 + y^2})^2 + (\frac {x^2 - y^2} {x^2 + y^2})^3 + … + (\frac {x^2 - y^2} {x^2 + y^2})^{n+1} = m(\frac {x^2 - y^2} {x^2 + y^2}) (2)

(2) - (1) 得

​(\frac {x^2 - y^2} {x^2 + y^2})^{n+1} - \frac {x^2 - y^2} {x^2 + y^2} = m(\frac {x^2 - y^2} {x^2 + y^2}) - m

​(\frac {x^2 - y^2} {x^2 + y^2})^{n+1} - \frac {x^2 - y^2} {x^2 + y^2} = m\frac {x^2 - y^2 - (x^2 + y^2)} {x^2 + y^2}

不算了恶心了,反正等比级数求和公式如下

​S_n = \frac {a_1(1-q^n)} {1-q}

用公式(4)和(5)证明:

​1^2 + 3^2 +…+ (2n + 1)^2 = \frac {(n+1)(2n+1)(2n+3)} {3}

已知:​1^2 + 2^2 +…+ n^2 = \frac {n(n+1)(2n+1)} {6}

​2^2 + 4^2 +…+ (2n)^2

​= 2^2 * 1^2 + 2^2*2^2 +…+ 2^2*n^2

​= 2^2(1^2 + 2^2 +…+ n^2)

​=2^2 \frac {n(n+1)(2n+1)} {6}

​1^2 + 2^2 +…+ (2n+1)^2 = \frac {(2n+1)(2n+1+1)(4n+2+1)} {6}

​1^2 + 3^2 +…+ (2n + 1)^2 = [1^2 + 2^2 +…+ (2n+1)^2] - [2^2 + 4^2 +…+ (2n)^2]

​= \frac {(2n+1)(2n+1+1)(4n+2+1)} {6} - 2^2 \frac {n(n+1)(2n+1)} {6}

​= \frac {(2n+1)(n+1)(4n+3)} {3} - \frac {2n(n+1)(2n+1)} {3}

​= \frac {(n+1)(2n+1)(2n+3)} {3}

​1^3 + 3^3 +…+ (2n + 1)^3 = (n + 1)^2(2n^2 + 4n + 1)

已知:​1^3 + 2^3 +…+ n^3 = [\frac {n(n+1)}{2}]^2

​2^3 + 4^3 +…+ (2n)^3

​= 2^3 * 1^3 + 2^3*2^3 +…+ 2^3*n^3

​= 2^3(1^3 + 2^3 +…+ n^3)

​= 2^3[\frac {n(n+1)}{2}]^2

​1^3 + 2^3 +…+ (2n+1)^3 = [\frac {(2n + 1)(2n + 1 + 1)}{2}]^2

​1^3 + 3^3 +…+ (2n + 1)^3 = [1^3 + 2^3 +…+ (2n+1)^3] - [2^3 + 4^3 +…+ (2n)^3]

​= [\frac {(2n + 1)(2n + 1 + 1)}{2}]^2 - 2^3[\frac {n(n+1)}{2}]^2

​= (n+1)^2(2n+1)^2 - 2n^2(n+1)^2

​= (n + 1)^2(2n^2 + 4n + 1)

数学归纳法证明:

​1^2 + 3^2 +…+ (2n + 1)^2 = \frac {(n+1)(2n+1)(2n+3)} {3}

​1^2 + 3^2 +…+ (2n + 3)^2 = \frac {(n+1)(2n+1)(2n+3)} {3} + (2n + 3)^2

​= \frac {(2n+3)(2n+5)(n+2)} {3}

​= \frac {(n+ 1 + 1)(2n + 2 + 1)(2n + 2 + 3)} {3}

​1^3 + 3^3 +…+ (2n + 1)^3 = (n + 1)^2(2n^2 + 4n + 1)

​1^3 + 3^3 +…+ (2n + 3)^3 = (n + 1)^2(2n^2 + 4n + 1) + (2n + 3)^3

​= 2n^4 + 4n^3 + n^2 + 4n^3 + 8n^2 + 2n + 2n^2 + 4n + 1 + 8n^3 + 3 * 3 * 4 n^2 + 3 * 2n * 9 + 27

​= 2n^4 + 16n^3 + 47n^2 + 60n + 28

​= (n^2 + 4n + 4)(2n^2 + 8n + 7)

​= (n + 2)^2[2(n + 1)^2 + 4(n + 1) + 1]